AG-530 is a very flexible ink designed for screen printing in:
- flex circuits
- membrane switches
- touch screens
- electroluminescent (EL) panels
- printed electronic applications

DESCRIPTION
- Extremely flexible, crease resistant and has excellent adhesion to polyester, polyimide, indium tin oxide and most textile substrates
- Silver filled, electrically conductive, screen printable ink or coating.
- Can be thinned with solvent for spraying or dipping for EMI/RFI shielding applications
- Designed to give a good balance between long open time on screens and short drying time in subsequent drying processes
- Compatible with our UV curable dielectrics, our conductive epoxy adhesives and UV curable component encapsulants and conformal coating
- AG-530 can be blended with C-100 Carbon Resistive Ink to give specific conductivity ranges
- Applied Ink Solutions can adjust the rheology of AG-530 to allow for more open time, or quicker drying, to accommodate different screening and drying operations

C-100 carbon resistive ink is recommended, if a carbon ink overprint is needed on top of AG-530.

TYPICAL PROPERTIES

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td>Thixotropic silver colored paste</td>
</tr>
<tr>
<td>Viscosity: Brookfield SC4-14</td>
<td>4,300-5,250 cps</td>
</tr>
<tr>
<td>Shear Rate 20@25°C</td>
<td>1.8</td>
</tr>
<tr>
<td>Thixotropic Ratio</td>
<td>90 seconds to 3 minutes @130°C</td>
</tr>
<tr>
<td>Drying Schedule</td>
<td>(may be longer or shorter depending upon oven heat profile and air flow)</td>
</tr>
<tr>
<td>Shelf Life</td>
<td>6 months in unopened container</td>
</tr>
<tr>
<td>Total % NV Solids</td>
<td>71% ± 2%</td>
</tr>
<tr>
<td>Hegman Gauge</td>
<td><25.0 µ</td>
</tr>
<tr>
<td>Surface Resistivity</td>
<td><.025 Ω/square/mil</td>
</tr>
</tbody>
</table>
AG-530 FLEXIBLE SILVER CONDUCTIVE INK

Application Guidelines

AG-530 will settle when it is stored in sealed containers over a period of time. It is essential to mix the material thoroughly before use to re-disperse any settled silver particles and to return the ink to a more desirable viscosity.

Screening

A monofilament polyester (157 to 230 mesh) or a stainless steel (165 to 325 mesh) screen is recommended, with emulsion thickness between .001” and .004”. A polyurethane squeegee with a Shore ‘A’ durometer between 60 and 70 is recommended.

Thinning & Cleanup

Use Solvent 30 for thinning. For cleanup, use Solvent 10 or suitable screen cleaner. If faster drying time is required, contact Applied Ink Solutions for solvent recommendations. If solvent based inks are left on screens for any length of time, the ink will gradually thicken as solvent evaporates. If ink is to be left on an inactive press for any length of time, solvent evaporation can be minimized by pooling the ink into a small area instead of leaving it spread out over a large area. Pooling the ink reduces the surface area, thus slowing the drying process. Always check the viscosity of ink that has been recovered from a screen and add small amounts of solvent while mixing thoroughly to restore viscosity. Solvent can be added to reclaim thickened ink as long as the ink has not dried and hardened completely.

Drying

It is essential that all residual solvent be removed from this ink once it is applied. Incomplete drying will cause the ink to appear dry on the surface while trapping solvent underneath the surface. Over time, this trapped solvent will migrate out of the ink, and can cause adhesion problems with any material, such as dielectrics, applied over the ink. Trapped solvent will also bloom rapidly during the heat forming process, causing blisters or craters in the ink.

Completeness of Drying

Evaluate the point-to-point resistance along one of the screened conductive paths after one pass through the drying oven or one cycle in a batch-drying oven. Run the substrate through another drying cycle. Measure the point-to-point resistance again along the same path and compare it to the original reading. If the resistance decreases by less than 10%, then the ink is essentially dry after the first drying cycle or pass through the oven. If the resistance decreases by more than 10%, then more drying time is required to completely remove the solvent.

Health & Safety

Products manufactured by Applied Ink Solutions are intended for use in an industrial environment by trained personnel. Please follow proper health/safety processes regarding storage, handling and processing of the products.